Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green’s function approach with spin relaxation
نویسندگان
چکیده
A spin metal-oxide-semiconductor field-effect transistor spin MOSFET , which combines a Schottky-barrier MOSFET with ferromagnetic source and drain contacts, is a promising device for spintronic logic. Previous simulation studies predict that this device should display a very high magnetoresistance MR ratio between the cases of parallel and antiparallel magnetizations for the case of half-metal ferromagnets HMF . We use the nonequilibrium Green’s function formalism to describe tunneling and carrier transport in this device and to incorporate spin relaxation at the HMF-semiconductor interfaces. Spin relaxation at interfaces results in nonideal spin injection. Minority spin currents arise and dominate the leakage current for antiparallel magnetizations. This reduces the MR ratio and sets a practical limit for spin MOSFET performance. We found that MR saturates at a lower value for smaller source-to-drain bias. In addition, spin relaxation at the detector side is found to be more detrimental to MR than that at the injector side, for drain bias less than the energy difference of the minority spin edge and the Fermi level. © 2008 American Institute of Physics. DOI: 10.1063/1.3013438
منابع مشابه
Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green╎s function approach with spin relaxation
متن کامل
Silicon-on-Insulator for Spintronic Applications: Spin Lifetime and Electric Spin Manipulation
With complementary metal-oxide semiconductor feature size rapidly approaching ultimate scaling limits, the electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and nonvolatile memory applications. Silicon, the main element of microelectronics, appears to be the perfect material for spin-driven applications. Despite a...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملElectric Field and Strain Effects on Surface Roughness Induced Spin Relaxation in Silicon Field-Effect Transistors
The potential of reduction of power consumption and the growth of computational speed achieved by scaling of semiconductor devices is close to exhaustion. Utilizing spin properties of electrons might provide an opportunity for further improvement of the properties of microelectronic-based devices. Since silicon is the main material currently used in microelectronics, we investigate the properti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008